A Unified Approach to Analyzing Asynchronous Coordinate Descent and Tatonnement
نویسندگان
چکیده
This paper concerns asynchrony in iterative processes, focusing on gradient descent and tatonnement, a fundamental price dynamic. Gradient descent is an important class of iterative algorithms for minimizing convex functions. Classically, gradient descent has been a sequential and synchronous process, although distributed and asynchronous variants have been studied since the 1980s. Coordinate descent is a commonly studied version of gradient descent. In this paper, we focus on asynchronous coordinate descent on convex functions F : R → R of the form
منابع مشابه
Perturbed Iterate Analysis for Asynchronous Stochastic Optimization
We introduce and analyze stochastic optimization methods where the input to each gradient updateis perturbed by bounded noise. We show that this framework forms the basis of a unified approachto analyze asynchronous implementations of stochastic optimization algorithms. In this framework,asynchronous stochastic optimization algorithms can be thought of as serial methods operatin...
متن کاملThe Physical Systems Behind Optimization Algorithms
We use differential equations based approaches to provide some physics insights into analyzing the dynamics of popular optimization algorithms in machine learning. In particular, we study gradient descent, proximal gradient descent, coordinate gradient descent, proximal coordinate gradient, and Newton’s methods as well as their Nesterov’s accelerated variants in a unified framework motivated by...
متن کاملPenalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملAnalyzing Random Permutations for Cyclic Coordinate Descent
We consider coordinate descent methods on convex quadratic problems, in which exact line searches are performed at each iteration. (This algorithm is identical to Gauss-Seidel on the equivalent symmetric positive definite linear system.) We describe a class of convex quadratic problems for which the random-permutations version of cyclic coordinate descent (RPCD) outperforms the standard cyclic ...
متن کاملAsynchronous Parallel Greedy Coordinate Descent
In this paper, we propose and study an Asynchronous parallel Greedy Coordinate Descent (Asy-GCD) algorithm for minimizing a smooth function with bounded constraints. At each iteration, workers asynchronously conduct greedy coordinate descent updates on a block of variables. In the first part of the paper, we analyze the theoretical behavior of Asy-GCD and prove a linear convergence rate. In the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.09171 شماره
صفحات -
تاریخ انتشار 2016